$\frac{d}{dx}(c) = 0$	Derivative of a constant function.
$\frac{d}{dx}(x) = 1$	Derivative of a linear function.
$\frac{d}{dx}(x^n) = nx^{n-1}$	The Power Rule Where n is any real number.
$\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x)$	The Constant Multiple Rule Where c is a constant and f is a differentiable function.
$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$	The Sum Rule Where f and g are both differentiable.
$\frac{d}{dx} \left[f(x) - g(x) \right] = \frac{d}{dx} f(x) - \frac{d}{dx} g(x)$	The Difference Rule Where f and g are both differentiable.
$\frac{d}{dx}(e^x) = e^x$	Derivative of the Natural Exponential Function
$\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)]$	The Product Rule Where f and g are both differentiable.
$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\frac{d}{dx}[f(x)] - f(x)\frac{d}{dx}[g(x)]}{\left[g(x)\right]^2}$	The Quotient Rule Where f and g are both differentiable.
$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$	
Or	The Chain Rule Where f and g are both differentiable.
$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$	Where $y = f(u)$ and $u = g(x)$ are both differentiable.
$\frac{d}{dx}(a^x) = a^x \ln a$	$\frac{d}{dx}(\ln x) = \frac{1}{x}$
$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$	$\frac{d}{d}\left(\ln x \right) = \frac{1}{d}$

Derivatives of Trigonometric Functions	
$\frac{d}{dx}(\sin x) = \cos x$	$\frac{d}{dx}(\csc x) = -\csc x \cot x$
$\frac{d}{dx}(\cos x) = -\sin x$	$\frac{d}{dx}(\sec x) = \sec x \tan x$
$\frac{d}{dx}(\tan x) = \sec^2 x$	$\frac{d}{dx}(\cot x) = -\csc^2 x$
Derivatives of Inverse Trigonometric Functions	
$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}\left(\csc^{-1}x\right) = -\frac{1}{\left x\right \sqrt{x^2-1}}$
$\frac{d}{dx}\left(\cos^{-1}x\right) = -\frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}\left(\sec^{-1}x\right) = \frac{1}{\left x\right \sqrt{x^2 - 1}}$
$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$	$\frac{d}{dx}\left(\cot^{-1}x\right) = -\frac{1}{1+x^2}$
Derivatives of Hyperbolic Functions	
$\frac{d}{dx}(\sinh x) = \cosh x$	$\frac{d}{dx}(\operatorname{csch} x) = -\operatorname{csch} x \operatorname{coth} x$
$\frac{d}{dx}(\cosh x) = \sinh x$	$\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$
$\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$	$\frac{d}{dx}(\coth x) = -\operatorname{csch}^2 x$
Derivatives of inverse Hyperbolic Functions	
$\frac{d}{dx}\left(\sinh^{-1}x\right) = \frac{1}{\sqrt{1+x^2}}$	$\frac{d}{dx}\left(\operatorname{csch}^{-1} x\right) = -\frac{1}{ x \sqrt{1+x^2}}$
$\frac{d}{dx}\left(\cosh^{-1}x\right) = \frac{1}{\sqrt{x^2 - 1}}$	$\frac{d}{dx}\left(\operatorname{sech}^{-1} x\right) = -\frac{1}{x\sqrt{1-x^2}}$
$\frac{\overline{d}}{dx}\left(\tanh^{-1}x\right) = \frac{1}{1-x^2}$	$\frac{d}{dx}\left(\coth^{-1}x\right) = \frac{1}{1-x^2}$