$\frac{d}{d x}(c)=0$	Derivative of a constant function.
$\frac{d}{d x}(x)=1$	Derivative of a linear function.
$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$	The Power Rule Where n is any real number.
$\frac{d}{d x}[c f(x)]=c \frac{d}{d x} f(x)$	The Constant Multiple Rule Where c is a constant and f is a differentiable function.
$\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)$	The Sum Rule Where f and g are both differentiable.
$\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)$	The Difference Rule Where f and g are both differentiable.
$\frac{d}{d x}\left(e^{x}\right)=e^{x}$	Derivative of the Natural Exponential Function
$\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}[g(x)]+g(x) \frac{d}{d x}[f(x)]$	The Product Rule Where f and g are both differentiable.
$\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d}{d x}[f(x)]-f(x) \frac{d}{d x}[g(x)]}{[g(x)]^{2}}$	The Quotient Rule Where f and g are both differentiable.
$\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)$	
Or $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$	The Chain Rule Where f and g are both differentiable. Where $y=f(u)$ and $u=g(x)$ are both differentiable.
$\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$	$\frac{d}{d x}(\ln x)=\frac{1}{x}$
$\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}$	$\frac{d}{d x}(\ln \|x\|)=\frac{1}{x}$

Derivatives of Trigonometric Functions	
$\frac{d}{d x}(\sin x)=\cos x$	$\frac{d}{d x}(\csc x)=-\csc x \cot x$
$\frac{d}{d x}(\cos x)=-\sin x$	$\frac{d}{d x}(\sec x)=\sec x \tan x$
$\frac{d}{d x}(\tan x)=\sec ^{2} x$	$\frac{d}{d x}(\cot x)=-\csc ^{2} x$
Derivatives of Inverse Trigonometric Functions	
$\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$	$\frac{d}{d x}\left(\csc ^{-1} x\right)=-\frac{1}{\|x\| \sqrt{x^{2}-1}}$
$\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$	$\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{\|x\| \sqrt{x^{2}-1}}$
$\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$	$\frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^{2}}$
Derivatives of Hyperbolic Functions	
$\frac{d}{d x}(\sinh x)=\cosh x$	$\frac{d}{d x}(\operatorname{csch} x)=-\operatorname{csch} x \operatorname{coth} x$
$\frac{d}{d x}(\cosh x)=\sinh x$	$\frac{d}{d x}(\operatorname{sech} x)=-\operatorname{sech} x \tanh x$
$\frac{d}{d x}(\tanh x)=\operatorname{sech}^{2} x$	$\frac{d}{d x}(\operatorname{coth} x)=-\operatorname{csch}^{2} x$
Derivatives of inverse Hyperbolic Functions	
$\frac{d}{d x}\left(\sinh ^{-1} x\right)=\frac{1}{\sqrt{1+x^{2}}}$	$\frac{d}{d x}\left(\operatorname{csch}^{-1} x\right)=-\frac{1}{\|x\| \sqrt{1+x^{2}}}$
$\frac{d}{d x}\left(\cosh ^{-1} x\right)=\frac{1}{\sqrt{x^{2}-1}}$	$\frac{d}{d x}\left(\operatorname{sech}^{-1} x\right)=-\frac{1}{x \sqrt{1-x^{2}}}$
$\frac{d}{d x}\left(\tanh ^{-1} x\right)=\frac{1}{1-x^{2}}$	$\frac{d}{d x}\left(\operatorname{coth}^{-1} x\right)=\frac{1}{1-x^{2}}$

